Corporate Bond Multipliers: Substitutes Matter

Manav Chaudhary, Zhiyu Fu, and Jian Li

American Finance Association

January 2024

Motivation

- The price impact of demand shifts in the bond market is an important input to answering a wide range of questions
 - Impact of QE/QT, mutual fund flows etc
 - Welfare loss in models with pecuniary externalities

Motivation

- The price impact of demand shifts in the bond market is an important input to answering a wide range of questions
 - Impact of QE/QT, mutual fund flows etc
 - Welfare loss in models with pecuniary externalities
- Existing literature has used both reduced-form and structural methods to provide quantitative answers to such questions (Ellul et al. 2011; Manconi et al. 2012; Bretscher et al. 2022...)
- Current methods often (implicitly) treat all securities as equally good substitutes

Introduction

- Corporate bonds' salient characteristics (rating and maturity) imply clear heterogeneous patterns in substitutability
 - Apple's (AA+) 10-year bond is a great substitute for Google's (AA+) 10-year bond, but a bad substitute for Ford's (BB+) 3-year bond
- Theory suggests that price impact crucially depends on the availability of close substitutes

Introduction

- Corporate bonds' salient characteristics (rating and maturity) imply clear heterogeneous patterns in substitutability
 - Apple's (AA+) 10-year bond is a great substitute for Google's (AA+) 10-year bond, but a bad substitute for Ford's (BB+) 3-year bond
- Theory suggests that price impact crucially depends on the availability of close substitutes
- This paper: measure how much corporate bond prices respond to demand shocks by introducing rich heterogeneity in the substitution patterns
 - Mis-specified substitution structure leads to biased estimates

This paper: security-level price impact is near-zero...

Multiplier (M): a 1% rise in non-fundamental demand (as a proportion of amount outstanding) causes prices to rise by M%

This paper: security-level price impact is near-zero...

- Multiplier (M): a 1% rise in non-fundamental demand (as a proportion of amount outstanding) causes prices to rise by M%
- Allow bonds with similar characteristics to be better substitutes with each other than the rest of the bonds
- The security level multiplier is near-zero
 - Much smaller than estimates ignoring heterogeneous substitutability

This paper: security-level price impact is near-zero...

- Multiplier (M): a 1% rise in non-fundamental demand (as a proportion of amount outstanding) causes prices to rise by M%
- Allow bonds with similar characteristics to be better substitutes with each other than the rest of the bonds
- The security level multiplier is near-zero
 - Much smaller than estimates ignoring heterogeneous substitutability
- Substitute passthrough (\tilde{M}) , defined as the \uparrow in price due to its close substitutes' prices \uparrow 1%, is close to 1

...however price impact is rising in aggregation

 For portfolios, the multiplier monotonically increases with the aggregation level, while the substitute passthrough decreases

Fully flexible substitution \implies inestimable equation

Log linearizing investor i's demand for N risky assets,

$$\underbrace{\mathbf{q}_{i,t}}_{N\times 1} = \underbrace{\Gamma}_{N\times N} \underbrace{\mathbf{p}_t}_{N\times 1} + \underbrace{\mathbf{\hat{u}}_{i,t}}_{N\times 1} + \underbrace{\hat{\nu}_{i,t}}_{N\times 1}$$

where $\mathbf{q}_{i,t}$ log quantity, \mathbf{p}_t log price, $\hat{\mathbf{u}}_{i,t}$ observed demand shocks, $\hat{\nu}_{i,t}$ unobserved demand shocks, $\Gamma_{j,j} = \frac{\partial q_j}{\partial p_j}$ and $\Gamma_{j,k} = \frac{\partial q_j}{\partial p_k}$.

Fully flexible substitution \implies inestimable equation

ullet Log linearizing investor i's demand for N risky assets,

$$\underbrace{\mathbf{q}_{i,t}}_{N\times 1} = \underbrace{\Gamma}_{N\times N} \underbrace{\mathbf{p}_t}_{N\times 1} + \underbrace{\hat{\mathbf{u}}_{i,t}}_{N\times 1} + \underbrace{\hat{\nu}_{i,t}}_{N\times 1}$$

where $\mathbf{q}_{i,t}$ log quantity, \mathbf{p}_t log price, $\hat{\mathbf{u}}_{i,t}$ observed demand shocks, $\hat{\nu}_{i,t}$ unobserved demand shocks, $\Gamma_{j,j} = \frac{\partial q_j}{\partial p_i}$ and $\Gamma_{j,k} = \frac{\partial q_j}{\partial p_k}$.

• Taking changes and applying market clearing, asset *j* return,

$$\underbrace{\Delta p_{j,t}}_{1\times 1} = \underbrace{M_j}_{1\times 1} \underbrace{u_{j,t}}_{1\times 1} + \underbrace{\tilde{M}_j^{\top}}_{1\times (N-1)} \underbrace{\Delta p_{j,t}^{sub}}_{N-1)\times 1} + \underbrace{\nu_{j,t}}_{1\times 1}$$

Fully flexible substitution \implies inestimable equation

Log linearizing investor i's demand for N risky assets,

$$\underbrace{\mathbf{q}_{i,t}}_{N\times 1} = \underbrace{\Gamma}_{N\times N} \underbrace{\mathbf{p}_t}_{N\times 1} + \underbrace{\mathbf{\hat{u}}_{i,t}}_{N\times 1} + \underbrace{\hat{\nu}_{i,t}}_{N\times 1}$$

where $\mathbf{q}_{i,t}$ log quantity, \mathbf{p}_t log price, $\hat{\mathbf{u}}_{i,t}$ observed demand shocks, $\hat{\nu}_{i,t}$ unobserved demand shocks, $\Gamma_{j,j} = \frac{\partial q_j}{\partial p_i}$ and $\Gamma_{j,k} = \frac{\partial q_j}{\partial p_k}$.

• Taking changes and applying market clearing, asset *j* return,

$$\underbrace{\Delta p_{j,t}}_{1\times 1} = \underbrace{M_j}_{1\times 1} \underbrace{u_{j,t}}_{1\times 1} + \underbrace{\tilde{M}_j^\top}_{1\times (N-1)} \underbrace{\Delta p_{j,t}^{sub}}_{N-1)\times 1} + \underbrace{\nu_{j,t}}_{1\times 1}$$

• Fully general, but too many $\Gamma \implies$ not estimable.....need restrictions on substitution

Imposing structure on substitution for feasible estimation

If we assume homogeneous substitution (single-layered demand),

$$\Delta p_{j,t} = M u_{j,t} + M_{mkt} \Delta p_t^{mkt} + \nu_{j,t}$$

Imposing structure on substitution for feasible estimation

If we assume homogeneous substitution (single-layered demand),

$$\Delta p_{j,t} = M u_{j,t} + M_{mkt} \Delta p_t^{mkt} + \nu_{j,t}$$

 If within-group substitution is different from cross-group substitution (double-layered demand),

$$\Delta p_{j,t} = M u_{j,t} + \tilde{M} \Delta p_{g(j),t} + M_{mkt} \Delta p_t^{mkt} + \nu_{j,t}$$

Imposing structure on substitution for feasible estimation

If we assume homogeneous substitution (single-layered demand),

$$\Delta p_{j,t} = Mu_{j,t} + M_{mkt} \Delta p_t^{mkt} + \nu_{j,t}$$

 If within-group substitution is different from cross-group substitution (double-layered demand),

$$\Delta p_{j,t} = Mu_{j,t} + \tilde{M}\Delta p_{g(j),t} + M_{mkt}\Delta p_t^{mkt} + \nu_{j,t}$$

 Mis-specifying the double-layer system as single-layer leads to positive omitted variable bias in M

Demand shocks $u_{i,t}$

• Remove the predictable components and common factors from quarterly mutual fund flows to get fund-level shocks $\epsilon_{i,t}$ Details

Demand shocks $u_{i,t}$

- Remove the predictable components and common factors from quarterly mutual fund flows to get fund-level shocks $\epsilon_{i,t}$ Details Robustness
- Bond j's demand shock $u_{j,t}$: sum of $\epsilon_{i,t}$ weighted by fund's lagged market share of bond j, $S_{i,j,t-1}$ (Coval and Stafford, 2007; Lou, 2012; Gabaix and Koijen, 2021...)
 - 1:1 passthrough assumption Robustness

Demand shocks $u_{j,t}$

- Remove the predictable components and common factors from quarterly mutual fund flows to get fund-level shocks $\epsilon_{i,t}$ Details Robustness
- Bond j's demand shock $u_{j,t}$: sum of $\epsilon_{i,t}$ weighted by fund's lagged market share of bond j, $S_{i,j,t-1}$ (Coval and Stafford, 2007; Lou, 2012; Gabaix and Koijen, 2021...)
 - 1:1 passthrough assumption Robustness
- Identification assumption: unobserved shocks are not correlated with past shares, i.e. $\nu_{j,t} \perp S_{i,j,t-1}$ for all i,t (Goldsmith-Pinkham et al., 2020; Chaudhry, 2022...)
 - Pooled exogenous exposure design Longer lagged shares
 - $\Rightarrow u_{j,t} \perp \nu_{j,t}$

Estimation

- Homogeneous substitution
 - Estimate using OLS with time fixed effects

$$\Delta p_{j,t} = Mu_{j,t} + \text{Time FE} + \nu_{j,t}$$

Estimation

- Homogeneous substitution
 - Estimate using OLS with time fixed effects

$$\Delta p_{j,t} = Mu_{j,t} + \text{Time FE} + \nu_{j,t}$$

- Heterogeneous substitution
 - Estimate using OLS with group-time fixed effects

$$\Delta p_{j,t} = Mu_{j,t} + \text{Group-Time FE} + \nu_{j,t}$$

• Estimate 2SLS, instrumenting $\Delta p_{g(j),t}$ with $u_{g(j),t}$

$$\Delta p_{j,t} = Mu_{j,t} + \tilde{M}\Delta p_{g(j),t} + \text{Time FE} + \nu_{j,t}$$

Estimation

- Homogeneous substitution
 - Estimate using OLS with time fixed effects

$$\Delta p_{j,t} = Mu_{j,t} + \text{Time FE} + \nu_{j,t}$$

- Heterogeneous substitution
 - Estimate using OLS with group-time fixed effects

$$\Delta p_{j,t} = Mu_{j,t} + \text{Group-Time FE} + \nu_{j,t}$$

• Estimate 2SLS, instrumenting $\Delta p_{g(j),t}$ with $u_{g(j),t}$

$$\Delta p_{j,t} = Mu_{j,t} + \tilde{M}\Delta p_{g(j),t} + \mathsf{Time}\;\mathsf{FE} + \nu_{j,t}$$

Baseline group: bonds with the same detailed rating

Estimates on individual securities

$$\Delta p_{j,t} = Mu_{j,t} + \mathsf{Time}\;\mathsf{FE} + \nu_{j,t}$$

	Homo. OLS		OLS		First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
Shock	0.39***	0.02	0.05	0.07		0.05
	(0.06)	(0.05)	(0.05)	(0.04)		(0.05)
Substitute return						1.07***
						(0.06)
Group Shock					2.61***	
,					(0.30)	
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	Yes	No	No
ST/LT x Quarter FE	No	No	No	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes	Yes
Ν	333,537	333,537	314,534	314,534	314,534	314,534
R^2	0.21	0.39	0.36	0.40	0.62	
First-stage F-statistic						72.49

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Estimates on individual securities

$$\Delta p_{j,t} = \mathit{Mu}_{j,t} + \mathsf{Group} ext{-}\mathsf{Time}\;\mathsf{FE} +
u_{j,t}$$

	Homo. OLS		OLS		First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
Shock	0.39***	0.02	0.05	0.07		0.05
	(0.06)	(0.05)	(0.05)	(0.04)		(0.05)
Substitute return						1.07***
						(0.06)
Group Shock					2.61***	
•					(0.30)	
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	Yes	No	No
ST/LT x Quarter FE	No	No	No	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes	Yes
N	333,537	333,537	314,534	314,534	314,534	314,534
R^2	0.21	0.39	0.36	0.40	0.62	
First-stage F-statistic						72.49

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Estimates on individual securities

$$\Delta p_{j,t} = \mathit{Mu}_{j,t} + \tilde{\mathit{M}} \Delta p_{\mathit{g}(j),t} + \mathsf{Time} \; \mathsf{FE} + \nu_{j,t}$$

	Homo. OLS	OLS			First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
Shock	0.39***	0.02	0.05	0.07		0.05
	(0.06)	(0.05)	(0.05)	(0.04)		(0.05)
Substitute return						1.07***
						(0.06)
Group Shock					2.61***	
					(0.30)	
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	Yes	No	No
ST/LT x Quarter FE	No	No	No	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes	Yes
N	333,537	333,537	314,534	314,534	314,534	314,534
R^2	0.21	0.39	0.36	0.40	0.62	
First-stage F-statistic						72.49

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Portfolios with different levels of aggregation

Asset	Substitute	М	Ñ
CUSIP	Bonds with same	0.05	1.07***
COSIF	Det. rating	(0.05)	(0.06)
Det. rating ×	Bonds with same	0.35***	0.9***
Quarter-to-maturity	Det. rating	(0.1)	(0.05)
Rating ×	Bonds with same	1.23*	0.73***
ST/MT/LT Buckets	rating	(0.48)	(0.13)
Rating ×	Bonds with same	1.59**	0.48**
ST/LT Buckets	rating	(0.58)	(0.15)
Rating	IG v.s. HY	3.51***	-0.02
rvarilik	IG V.S. 111	(0.87)	(0.31)

Conclusion

- It is important to account for the correct substitution set when estimating multipliers
- The price multiplier and substitution effect depend on the aggregation level
- Future line of work
 - How to robustly model different levels of substitution? Can we use information in investor holdings to identify close vs. distant substitutes?
 - How to map the multipliers and substitute passthroughs to model primitives? What are the connections of these estimates within and across asset classes?

Literature

- Demand estimation using logit-demand system: Koijen and Yogo (2019), Bretscher, Schmid, Sen, and Sharma (2022), Darmouni, Siani, and Xiao (2023)...
 - ⇒ Our approach is close to a *nested-logit* demand system
- Flow induced trading: Lou (2012), Coval and Stafford (2007), Li (2021)...
 - ⇒ We account for close-substitute portfolio's return to correct for omitted variable bias
- One-time demand shocks: Shleifer (1986); Harris and Gurel (1986);
 Wurgler and Zhuravskaya (2002); Pavlova and Sikorskaya (2022)...
 - ⇒ Our approach can analyze multipliers for portfolios at different aggregation level

Comparison with Existing Estimates

Methodology

Details on the Demand System

ullet For fund i, assume demand for N risky assets as

$$\underbrace{\mathbf{q}_{i,t}}_{N\times 1} = \underbrace{\Gamma}_{N\times N} \underbrace{\mathbf{p}_t}_{N\times 1} + \underbrace{\mathbf{u}_{i,t}}_{N\times 1} + \underbrace{\nu_{i,t}}_{N\times 1} \tag{1}$$

- $\mathbf{q}_{i,t}$: log quantity
- \mathbf{p}_t : log price
- $\mathbf{u}_{i,t}$: observed demand shocks
- $\nu_{i,t}$: unobserved demand shocks
- $\Gamma_{j,j}=rac{\partial q_j}{\partial p_j}$ and $\Gamma_{j,k}=rac{\partial q_j}{\partial p_k}$
- Log-linearization of any generic demand function

Details on the Demand System

 For asset j, apply market clearing, and log-linearize around previous period prices

$$\Delta p_{j,t} = \underbrace{M_{0,j}}_{=-\frac{1}{\Gamma_{j,j}}} u_{j,t} + \underbrace{M_{1,j}}_{=-\frac{\sum_{k \neq j} \Gamma_{j,k}}{\Gamma_{j,j}}} \Delta p_{j,t}^{sub}(\mathbf{u}_t) + \underbrace{\nu_{j,t}}_{\text{Unobserved demand shocks}}$$
(2)

where

$$u_{j,t} \equiv \sum_{i} S_{i,j,t-1} u_{i,t} \tag{3}$$

$$\Delta p_{j,t}^{sub} \equiv \frac{\sum_{k \neq j} \Gamma_{j,k} \Delta p_{k,t}}{\sum_{k \neq j} \Gamma_{j,k}} \tag{4}$$

• **Issue**: (i) cross-elasticities $\Gamma_{j,k}$ are not observed \therefore we cannot construct $\Delta p_{j,t}^{sub}$, and (ii) too many $M_{0,j}$ and $M_{1,j}$ to estimate

Details on the Demand System

Typical single-layered demand assumes homogeneous substitution,

$$\Gamma_{j,k} = \begin{cases} \gamma^o & \text{if} \quad j = k \\ \gamma^d w_k & \text{if} \quad j \neq k \end{cases}$$

where w_k is the market share, and γ^o , and γ^d are constants.

Our two-layered demand allows for close and distant substitutes,

$$\Gamma_{j,k} = \begin{cases} \gamma^o & \text{if} \quad j = k \\ \gamma^c w_{k|g} + \gamma^d w_k & \text{if} \quad j \neq k; \text{ and } j,k \text{ in same group} \\ \gamma^d w_k & \text{otherwise} \end{cases}$$

where $w_{k|g}$ is the market share within group g, and γ^c is a constant.

□ ▶ ◀∰ ▶ ◀불 ▶ ◀불 ▶ · 불 · 쒼익()

Comparison with Nested-Logit Demand Model

In nested-logit demand

$$w(j \mid g) = \frac{\exp(\delta(j, g))}{\sum_{j \in g} \exp(\delta(j, g))}$$
 (5)

$$w(g) = \frac{\left(\sum_{k \in g} \exp(\delta(k, g))\right)^{\lambda}}{1 + \sum_{g'} \left(\sum_{k \in g'} \exp(\delta(k, g'))\right)^{\lambda}} \tag{6}$$

$$\delta(j,g) = \beta_g p_j + \beta X + u_j \tag{7}$$

Apply market clearing condition, we get

$$\Delta p_{j} = \underbrace{\frac{1}{(1-\beta_{g})}}_{M} u_{j} + \underbrace{\frac{\beta_{g}}{(\beta_{g}-1)} (1-\lambda)}_{\tilde{M}} \underbrace{\sum_{k \in g} w(k \mid g) \Delta p_{k}}_{\Delta p_{j}^{g}} + \underbrace{\lambda \frac{1}{(\beta_{g}-1)} \sum_{g'} \sum_{k \in g'} \beta_{g'} w(k) \Delta p_{k}}_{\text{Time FE}} + \tilde{\nu}_{j}$$
(8)

If $\lambda=1$, collapse to logit demand and $\Delta p_j^{\mathcal{g}}$ drops out.

Detailed Construction of Demand Shocks

- Flow induced trading by mutual funds: Morningstar data subset to corporate bond funds
- Remove predictable component: estimate an AR(3) model with a time trend for each fund i

$$f_{i,t} = \rho_{i,0} + \sum_{k=1}^{3} \rho_{i,k} f_{i,t-k} + \delta_i t + \varepsilon_{i,t}$$

demand shocks are scaled by $K_i = 1/(1 - \sum_{k=1}^3 \rho_{i,k})$

- **3** Remove common factors: $\varepsilon_{i,t} = \alpha_i + \delta_t + u_{i,t}$
- **4** Aggregate to asset j shock: $u_{j,t} = \sum_{j} S_{i,j,t-1} K_i u_{i,t}$

Back

Distribution of Demand Shocks

Factor Structure of Flows

$$f_{i,t}(\text{or }\epsilon_{i,t}) = \delta_t + C'_{i,t}(\lambda \eta_t) + u_{i,t}$$

where $C_{i,t}$ is a vector of observable characteristics of fund i, including (lagged) log AUM of the firm, the share in high-yield bonds, and the average duration in the portfolio.

Back

Alternative Flow Specification

	Bench.	Robustness						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Shock	0.33***	0.29**	0.32**	0.37***	0.26**	0.28***	0.21***	0.18
	(0.10)	(0.10)	(0.11)	(0.11)	(80.0)	(80.0)	(0.06)	(0.13)
AR lags	3	3	1	2	1	2	3	0
Time Trend	Yes	Yes	Yes	Yes	No	No	No	No
Factors	No	Yes	No	No	No	No	No	No
Quarter × Sub FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Drop Crisis	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	77,387	77,387	77,387	77,387	77,387	77,387	77,387	77,387
R^2	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Fund Passthrough

ullet Assuming MFs have downward sloping demands, we can estimate lower-bound passthrough coefficient eta by running the regression,

$$\Delta q_{ijt} = \alpha + \beta f_{it} + \varepsilon_{ijt}$$

- ullet We can find upper-bound multiplier estimates $ar{M} = \hat{M}/\hat{eta}$
- Even the upper bound multiplier estimates are much smaller than estimates assuming homogeneous substitutability.

	CU	CUSIP		x Q to Mat	Rating	
	(1)	(2)	(3)	(4)	(5)	(6)
Flows	0.51***	0.49***	0.58***	0.57***	0.94***	0.91***
	(0.02)	(0.01)	(0.01)	(0.01)	(0.04)	(0.05)
Time + Fund FE	No	Yes	No	Yes	No	Yes
N	4,861,780	4,861,779	1,193,197	1,193,177	163,515	163,502

Standard errors in parentheses

ロト 4 押 ト 4 重 ト 4 重 ト 3 重 り 4 〇

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Using Large Shocks Only — CUSIP

	Homo. OLS		OLS		First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
Shock	0.35***	0.06	0.05	0.04		0.05
	(0.05)	(0.04)	(0.04)	(0.04)		(0.05)
Substitute return						1.18***
						(0.06)
Group Shock					2.54***	
					(0.28)	
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	Yes	No	No
ST/LT x Quarter FE	No	No	No	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes	Yes
N	166,749	166,747	157,247	157,247	157,248	157,248
R^2	0.20	0.40	0.37	0.39	0.61	0.17
First-stage F-statistic						79.08

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Using Large Shocks Only — Baseline Portfolio

	Homo. OLS		OLS		First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
Shock	0.80***	0.33***	0.28**	0.23*		0.27**
	(0.11)	(0.10)	(0.10)	(0.09)		(0.10)
Substitute return						0.97***
						(0.07)
Group Shock					2.76***	
					(0.32)	
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	Yes	No	No
ST/LT x Quarter FE	No	No	No	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes	Yes
N	39,324	39,323	37,086	37,086	37,086	37,086
R^2	0.25	0.51	0.47	0.49	0.51	0.24
First-stage F-statistic						71.62

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

One-Year Lagged Shares: CUSIP-level

	Homo. OLS	0	LS	First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)
Shock	0.39***	-0.03	0.01		0.02
	(0.07)	(0.06)	(0.05)		(0.06)
Substitute return					1.08***
					(0.04)
Group Shock				3.93***	
				(0.47)	
Quarter FE	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes
N	277,336	277,336	261,144	261,144	261,144
R^2	0.21	0.40	0.37	0.62	
First-stage F-statistic					94.96

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

One-Year Lagged Shares: Baseline Portfolios

	Homo. OLS	0	LS	First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)
Shock	1.04***	0.31**	0.33**		0.33**
	(0.15)	(0.12)	(0.12)		(0.12)
Substitute return					0.96***
					(0.04)
Group Shock				4.36***	
•				(0.51)	
Quarter FE	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes
Ν	81,866	81,866	77,387	76,348	76,348
R^2	0.22	0.47	0.41	0.48	
First-stage F-statistic					69.48

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Estimates for Baseline Portfolio

Define assets as portfolios formed by bonds with the same (detailed rating, quarter-to-maturity)

	Homo. OLS		OLS		First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
Shock	0.95***	0.32**	0.33***	0.35***		0.35***
	(0.12)	(0.10)	(0.10)	(0.10)		(0.10)
Substitute return						0.90***
						(0.05)
Group shock					2.91***	
·					(0.34)	
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	Yes	No	No
ST/LT x Quarter FE	No	No	No	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes	Yes
N	81,866	81,866	77,387	77,387	76,348	76,348
R^2	0.23	0.47	0.41	0.44	0.47	
First-stage F-statistic						69.85

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Alternative Substitute Definitions

	(1)	(2)	(3)	(4)
Shock	0.35***	0.35***	0.31**	0.33**
	(0.10)	(0.10)	(0.11)	(0.11)
Detailed rating substitute return	0.90***	0.77***		
	(0.05)	(0.17)		
IG substitute return		0.18		
		(0.22)		
Coarse rating substitute return			0.79***	
G			(80.0)	
Det rating × ST/LT substitute return				0.99***
				(80.0)
Quarter FE	Yes	Yes	Yes	Yes
Drop Crisis	Yes	Yes	Yes	Yes
N	76,348	76,348	76,296	76,348
First-stage F-statistic	69.85	3.37	18.19	107.94

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Portfolios with different levels of aggregation

Table: Aggregate Portfolios

	Asset	Substitute Portfolio
CUSIP	Individual bonds	Other bonds in the same detailed rating category
Rating × Quarter to Maturity	Portfolios formed by detailed rating and quarter-to-maturity	Other bonds in the same detailed rating category
$Rating \times ST/MT/LT \; Buckets$	Portfolios formed by coarse rating and three maturity groups $(\{[0,4),[4,10),[10,\infty)\})$	Other bonds in the same coarse rating category
$Rating \times ST/LT \; Buckets$	Portfolios formed by coarse rating and two maturity groups $(\{[0,10),[10,\infty)\})$	Other bonds in the same coarse rating category
Rating	Portfolios formed by coarse rating categories	Other bonds in the same investment grade category

Firm-level Portfolios

Portfolios formed by firm \times quarter to maturity

	Homo. OLS		OLS		First-stage	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
Shock	0.44***	0.10*	0.11*	0.12**		0.11*
	(0.06)	(0.05)	(0.04)	(0.04)		(0.05)
Substitute return						0.98***
						(0.05)
Group Shock					2.63***	
·					(0.31)	
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Group x Quarter FE	No	Yes	Yes	Yes	No	No
ST/LT x Quarter FE	No	No	No	Yes	No	No
Drop Crisis	No	No	Yes	Yes	Yes	Yes
N	368,138	368,138	348,230	348,230	344,446	344,446
R^2	0.19	0.35	0.31	0.35	0.61	0.14
First-stage F-statistic						71.96

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Information Ratio of Arbitrage Strategies

- If $u_{j,t} > 0$, short asset j and buy the close substitute portfolio (and the market) in period t. Unwind in period t + 1.
 - If $u_{j,t} < 0$, do the opposite
- Define arbitrage risk

$$ArbRisk_{j} \equiv std(\tilde{\nu}_{j,t} + Mu_{j,t}) \tag{9}$$

Sharpe ratio

$$SR = \frac{M \times Mean(|u_{j,t}|)}{Mean(ArbRisk_j)}$$
 (10)

 Sharpe ratio ranges from 0.006 at the CUSIP level to 0.28 at the rating-portfolio level

Information Ratios

The risks of engaging in these arbitrage activities are high relative to the average gain.

Table: Arbitrage Risk and Portfolio Multipliers

	М	Arb. risk	Sharpe ratio
CUSIP	.052	.043	.006
Det. rating \times Quarter to maturity	.348	.055	.026
$Rating \times ST/MT/LT$	1.229	.037	.134
Rating \times ST/LT	1.591	.048	.142
Rating	3.507	.043	.280

Arbitrage Risks and Multipliers

Use baseline portfolios formed by detailed rating and quarter-to-maturity

$$\Delta p_{j,t} = \textit{M}_{0}\textit{u}_{j,t} + \textit{M}_{1}\textit{u}_{j,t} \times \textit{ArbRisk}_{j} + \tilde{\textit{M}} \Delta p_{j,t}^{\textit{sub}} + \tilde{\nu}_{j,t}$$

	(1)	(2)
Shock	0.35***	0.03
	(0.04)	(0.04)
ArbRisk x Shock		0.45***
		(0.03)
Substitute return	0.90***	0.91***
	(0.04)	(0.04)
Quarter FE	Yes	Yes
Drop Crisis	Yes	Yes
A /	76.040	76 240
N	76,348	76,348

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Arbitrage Risks and Multipliers

Sort portfolios into quartiles

Heterogeneity in Rating

Figure: Heterogeneity in HY/IG

Heterogeneity in Maturity

Figure: Heterogeneity in Maturity

In the Case of Equity

Table: Multiplier estimates for stock markets

	Stock Return				
	(1)	(2)	(3)		
Shock	0.380***	0.254***	0.252***		
	(0.086)	(0.040)	(0.072)		
Group x Quarter FE	None	FF3	Industry		
Quarter FE	Yes	Yes	Yes		
Ν	144,768	136,270	135,201		
R^2	0.188	0.332	0.263		

• The multiplier estimated is smaller once we allow for heterogeneous cross-elasticities, but the difference in magnitudes is not as large as that in the bond case