Is Asset Demand Elasticity Set at the Household or Intermediary Level?

Ehsan Azarmsa & Carter Davis

Discussion by Aditya Chaudhry

Ohio State University, Fisher College of Business
Overview

Research question

• How price elastic are households in rebalancing across intermediaries?
Overview

Research question

• How price elastic are households in rebalancing across intermediaries?
• Does household rebalancing undo intermediary inelastic demand?
Overview

Research question

• How price elastic are households in rebalancing across intermediaries?
• Does household rebalancing undo intermediary inelastic demand?

Significance

• Implications for estimates of aggregate price elasticities
Overview

Research question

• How price elastic are households in rebalancing across intermediaries?
• Does household rebalancing undo intermediary inelastic demand?

Significance

• Implications for estimates of aggregate price elasticities
• Implications for “bite” of intermediary frictions
Overview

Research question

• How price elastic are households in rebalancing across intermediaries?
• Does household rebalancing undo intermediary inelastic demand?

Significance

• Implications for estimates of aggregate price elasticities
• Implications for “bite” of intermediary frictions

Methodology

• New two-layer demand system extending Koijen & Yogo (2019)
• Endogenize wealth distribution across intermediaries
Overview

Research question

• How price elastic are households in rebalancing across intermediaries?
• Does household rebalancing undo intermediary inelastic demand?

Significance

• Implications for estimates of aggregate price elasticities
• Implications for “bite” of intermediary frictions

Methodology

• New two-layer demand system extending Koijen & Yogo (2019)
• Endogenize wealth distribution across intermediaries

Results

• Household elasticity is small
Agenda

Stylized model

• What are authors trying to measure?
• Contextualize with previous elasticity estimates
Agenda

Stylized model

• What are authors trying to measure?
• Contextualize with previous elasticity estimates

Methodology

• How does two-layer demand system work?
• Potential extensions
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

- Bond Fund
- Mixed Fund
Stylized Model (Following Gabaix & Kojien (2023))

Representative Household

1 − α α

Bond Fund Mixed Fund
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

\[1 - \alpha \quad \alpha\]

- Bond Fund
- Mixed Fund

- Risk Free Bond
- Risky Asset
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

\[1 - \alpha \quad \alpha \]

Bond Fund \quad Mixed Fund

Risk Free Bond \quad Risky Asset
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

\[1 - \alpha \quad \alpha \]

\[\text{Bond Fund} \quad \text{Mixed Fund} \]

\[1 - \theta \quad \theta \]

\[\text{Risk Free Bond} \quad \text{Risky Asset} \]
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

1 - \(\alpha\) \(\alpha\)

Bond Fund Mixed Fund

1 - \(\theta\) \(\theta\)

Risk Free Bond: \(r\) Risky Asset: \(\pi + r\)
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

1 – \(\alpha \) \(\alpha \)

Bond Fund Mixed Fund

1 – \(\theta \) \(\theta = e^{kM(\pi - \bar{\pi})} \)

Risk Free Bond: \(r \) Risky Asset: \(\pi + r \)
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

\[1 - \alpha \]
\[\alpha = e^{k_H \theta (\pi - \bar{\pi})} \]

Bond Fund

Mixed Fund: \(\theta \pi + r \)

\[1 - \theta \]

\[\theta = e^{k_M (\pi - \bar{\pi})} \]

Risk Free Bond: \(r \)

Risky Asset: \(\pi + r \)
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

1 - \(\alpha\)

\(\alpha = e^{\kappa H \theta (\pi - \bar{\pi})}\)

\(\alpha = e^{\kappa H \theta (\pi - \bar{\pi})}\)

Mixed Fund: \(\theta \pi + r\)

1 - \(\theta\)

\(\theta = e^{\kappa M (\pi - \bar{\pi})}\)

Bond Fund

Risky Asset: \(\pi + r\)

Risk Free Bond: \(r\)

\(\omega = e^z\)

Noise Trader
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

\[\alpha = e^{\kappa_H \theta (\pi - \bar{\pi})} \]

1 - \alpha

Bond Fund

Mixed Fund: \(\theta \pi + r \)

Mixed Fund: \(\theta \pi + r \)

1 - \theta

1 - \theta

Risk Free Bond: \(r \)

Risk Free Bond: \(r \)

Risky Asset: \(\pi + r \)

Risky Asset: \(\pi + r \)

\[\omega = e^z \]

\[\omega = e^z \]

Noise Trader

Steady State:

\[z = 0, \pi = \bar{\pi}, \alpha = 1, \theta = 1, \delta = \frac{D}{P} \]
Stylized Model (Following Gabaix & Koijen (2023))

Steady State:
\[z = 0, \pi = \bar{\pi}, \alpha = 1, \theta = 1, \delta = \frac{D}{P} \]
Shock: \[z > 0 \]
Stylized Model (Following Gabaix & Koijen (2023))

<table>
<thead>
<tr>
<th>Bond Fund</th>
<th>Mixed Fund: $\theta\pi + r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - \theta$</td>
<td>$\theta = e^{\kappa^M(\pi - \bar{\pi})}$</td>
</tr>
<tr>
<td>Risk Free Bond: r</td>
<td>$\Delta q^M = -\kappa^M \delta \Delta p$</td>
</tr>
<tr>
<td>Risky Asset: $\pi + r$</td>
<td>$\omega = e^z$</td>
</tr>
<tr>
<td>Noise Trader</td>
<td>$\Delta q^N = z$</td>
</tr>
</tbody>
</table>

Representative Household

1 - α

$\alpha = e^{\kappa^H\theta(\pi - \bar{\pi})}$

Steady State:

$z = 0, \pi = \bar{\pi}, \alpha = 1, \theta = 1, \delta = \frac{D}{P}$

Shock: $z > 0$
Stylized Model (Following Gabaix & Koijen (2023))

Representative Household

\[\alpha = e^{\kappa^H \theta (\pi - \bar{\pi})} \]

\[1 - \alpha \]

\[\text{Bond Fund} \]

\[1 - \theta \]

\[\text{Risk Free Bond: } r \]

\[\theta \text{ Mixed Fund: } \theta \pi + r \]

\[\Delta q^M = - \left(\frac{\kappa^M \delta + \kappa^H \delta}{\zeta^M \zeta^H} \right) \Delta p \]

\[\theta = e^{\kappa^M (\pi - \bar{\pi})} \]

\[\omega = e^z \]

\[\Delta q^N = z \]

Steady State:

\[z = 0, \pi = \bar{\pi}, \alpha = 1, \theta = 1, \delta = \frac{D}{P} \]

Shock:

\[z > 0 \]
Steady State:
\[z = 0, \pi = \bar{\pi}, \alpha = 1, \theta = 1, \delta = \frac{D}{P} \]
Shock: \(z > 0 \)
Market Clearing: \(\Delta q^N + \Delta q^M = 0 \)
\[\rightarrow \Delta p = \frac{1}{\zeta^M + \zeta^H} z \]
Aggregate Demand Elasticity has Two Components

\[\zeta^{Agg} = \zeta^M + \zeta^H \]

Previous elasticity estimates

- Holdings data: \(\zeta^M\) is small
 - Koijen & Yogo (2019), Haddad, et al. (2022)
Aggregate Demand Elasticity has Two Components

\[\zeta^{\text{Agg}} = \zeta^{M} + \zeta^{H} \]

Previous elasticity estimates

- Holdings data: \(\zeta^{M} \) is small
 - Koijen & Yogo (2019), Haddad, et al. (2022)
- Exogenous demand shocks: \(\zeta^{\text{Agg}} \) is small
 - **Mutual fund flows**: Lou (2012), Ben-David, et al. (2020), Li (2021), Chaudhary, et al. (2023)
 - **Cash payments**: Schmickler & Tremacoldi-Rossi (2022), Greenwood, et al. (2022), Hartzmark & Solomon (2022)
 - **Index inclusion**: Chang, et al. (2014), Pavlova & Sikorskaya (2020)
Aggregate Demand Elasticity has Two Components

\[\zeta^{\text{Agg}} = \zeta^{M} + \zeta^{H} \]

Previous elasticity estimates

- **Holdings data**: \(\zeta^{M} \) is small
 - Kojien & Yogo (2019), Haddad, et al. (2022)

- **Exogenous demand shocks**: \(\zeta^{\text{Agg}} \) is small
 - **Mutual fund flows**: Lou (2012), Ben-David, et al. (2020), Li (2021), Chaudhary, et al. (2023)
 - **Cash payments**: Schmickler & Tremacoldi-Rossi (2022), Greenwood, et al. (2022), Hartzmark & Solomon (2022)
 - **Index inclusion**: Chang, et al. (2014), Pavlova & Sikorskaya (2020)

- Implication: \(\zeta^{H} \) is small
Aggregate Demand Elasticity has Two Components

\[\zeta^{\text{Agg}} = \zeta^{M} + \zeta^{H} \]

Previous elasticity estimates

- Holdings data: \(\zeta^{M} \) is small
 - Koijen & Yogo (2019), Haddad, et al. (2022)
- Exogenous demand shocks: \(\zeta^{\text{Agg}} \) is small
 - Mutual fund flows: Lou (2012), Ben-David, et al. (2020), Li (2021), Chaudhary, et al. (2023)
 - Cash payments: Schmickler & Tremacoldi-Rossi (2022), Greenwood, et al. (2022), Hartzmark & Solomon (2022)
 - Index inclusion: Chang, et al. (2014), Pavlova & Sikorskaya (2020)
- Implication: \(\zeta^{H} \) is small

This paper: First direct evidence \(\zeta^{H} \) is small
Two-Layer Asset Demand System

Intermediary level: Following Koijen & Yogo (2019)

\[
\frac{w_{i,t}(n)}{w_{i,t}(0)} = \exp \left\{ \beta_{0,i,t} m e_t(n) + \sum_{k=1}^{K-1} \beta_{k,i,t} x_{k,t}(n) + \beta_{K,i,t} \right\} \epsilon_{i,t}(n)
\]

- Investor \(i \) weight in stock \(n \) in quarter \(t \)
- Function of market equity, stock characteristics
Two-Layer Asset Demand System

Intermediary level: Following Koijen & Yogo (2019)

\[
\frac{w_{i,t}(n)}{w_{i,t}(0)} = \exp \left\{ \beta_{0,i,t} me_t(n) + \sum_{k=1}^{K-1} \beta_{k,i,t} x_k,t(n) + \beta_{K,i,t} \right\} \epsilon_{i,t}(n)
\]

- Investor \(i\) weight in stock \(n\) in quarter \(t\)
- Function of market equity, stock characteristics

Innovation: Household level endogenizes wealth distribution

\[
\frac{\alpha_{HH,t}(i)}{\alpha_{HH,t}(0)} = \exp \left\{ \beta_{0,HH,t} \tilde{m}e_t(i) + \sum_{k=1}^{K-1} \beta_{k,HH,t} \tilde{x}_{t,k}(i) + \beta_{K,HH,t} \right\} \epsilon_{HH,t}(i)
\]

- Representative household weight in intermediary \(i\)
- Function of average market equity, stock characteristics for \(i\)
Two-Layer Asset Demand System

Intermediary level: Following Koijen & Yogo (2019)

\[
\frac{w_{i,t}(n)}{w_{i,t}(0)} = \exp \left\{ \beta_{0,i,t} m_{t}(n) + \sum_{k=1}^{K-1} \beta_{k,i,t} x_{k,t}(n) + \beta_{k,i,t} \right\} \epsilon_{i,t}(n)
\]

- Investor \(i \) weight in stock \(n \) in quarter \(t \)
- Function of market equity, stock characteristics

Innovation: Household level endogenizes wealth distribution

\[
\frac{\alpha_{HH,t}(i)}{\alpha_{HH,t}(0)} = \exp \left\{ \beta_{0,HH,t} \tilde{m}_{t}(i) + \sum_{k=1}^{K-1} \beta_{k,HH,t} \tilde{x}_{k,t}(i) + \beta_{k,HH,t} \right\} \epsilon_{HH,t}(i)
\]

- Representative household weight in intermediary \(i \)
- Function of average market equity, stock characteristics for \(i \)

Aggregate elasticity depends on \(\beta_{0,i,t} \) and \(\beta_{0,HH,t} \)
Two-Layer Asset Demand System

Intermediary level: Following Koijen & Yogo (2019)

\[
\frac{w_{i,t}(n)}{w_{i,t}(0)} = \exp \left\{ \beta_{0,i,t} m_{e_t}(n) + \sum_{k=1}^{K-1} \beta_{k,i,t} X_{k,t}(n) + \beta_{K,i,t} \right\} \epsilon_{i,t}(n)
\]

- Investor i weight in stock n in quarter t
- Function of market equity, stock characteristics

Innovation: Household level endogenizes wealth distribution

\[
\frac{\alpha_{HH,t}(i)}{\alpha_{HH,t}(0)} = \exp \left\{ \beta_{0,HH,t} \tilde{m}_{e_t}(i) + \sum_{k=1}^{K-1} \beta_{k,HH,t} \tilde{x}_{t,k}(i) + \beta_{K,HH,t} \right\} \epsilon_{HH,t}(i)
\]

- Representative household weight in intermediary i
- Function of average market equity, stock characteristics for i

Aggregate elasticity depends on $\beta_{0,i,t}$ and $\beta_{0,HH,t}$
Main Result: Household Elasticity is Small
Comments

Household layer is an important methodological advancement

Household inelasticity consistent with previous results
Household layer is an important methodological advancement

Household inelasticity consistent with previous results

More can be done with two-layer demand system

- Scope to analyze rich substitution patterns

\[
\frac{\alpha_{HH,t}(i)}{\alpha_{HH,t}(0)} = \exp \left\{ \beta^i_{0,HH,t} \tilde{m}e_t(i) + \sum_{k=1}^{K-1} \beta_{k,HH,t} \tilde{x}_{t,k}(i) + \beta_{K,HH,t} \right\} \epsilon_{HH,t}(i)
\]

- How do households substitute between value/growth, funds?
- Are households more elastic for cheaper, less specialized funds?
Comments

Household layer is an important methodological advancement

Household inelasticity consistent with previous results

More can be done with two-layer demand system

- Scope to analyze rich substitution patterns

\[
\frac{\alpha_{HH,t}(i)}{\alpha_{HH,t}(0)} = \exp \left\{ \beta_{0,HH,t}^i \tilde{m}e_t(i) + \sum_{k=1}^{K-1} \beta_{k,HH,t} \tilde{x}_{t,k}(i) + \beta_{K,HH,t} \right\} \epsilon_{HH,t}(i)
\]

- How do households substitute between value/growth, funds?
- Are households more elastic for cheaper, less specialized funds?

- Apply household layer at lower frequency
 - How slow is slow-moving capital?
Conclusion

Households are inelastic in rebalancing across intermediaries

- Develop new two-layer asset demand system
- Consistent with previous elasticity estimates

Households do not undo intermediary inelasticity, frictions

Authors can push the methodology further

- Richer substitution patterns
- Dynamics