

Distorted Beliefs and Asset Prices

Bretscher, Malkhozov, Tamoni, Yang (2025)

Discussion by Aditya Chaudhry

The Ohio State University

15th May 2025

Context

What explains variation in asset prices?

Context

What explains variation in asset prices?

- **Campbell & Shiller (1988):** Expected cash flows or expected returns

$$\log(P_t/D_t) \approx \text{Constant} + \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [\Delta d_{t+1+h}]}_{\text{Expected Cash Flows}} - \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [r_{t+1+h}]}_{\text{Expected Returns}} \quad (1)$$

Context

What explains variation in asset prices?

- **Campbell & Shiller (1988):** Expected cash flows or expected returns

$$\log(P_t/D_t) \approx \text{Constant} + \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [\Delta d_{t+1+h}]}_{\text{Expected Cash Flows}} - \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [r_{t+1+h}]}_{\text{Expected Returns}} \quad (1)$$

- Empirically: Expected returns explain most (or all) variation (e.g. Cochrane (2011))

Context

What explains variation in asset prices?

- **Campbell & Shiller (1988):** Expected cash flows or expected returns

$$\log(P_t/D_t) \approx \text{Constant} + \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [\Delta d_{t+1+h}]}_{\text{Expected Cash Flows}} - \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [r_{t+1+h}]}_{\text{Expected Returns}} \quad (1)$$

- Empirically: Expected returns explain most (or all) variation (e.g. Cochrane (2011))
- Traditional interpretation (**under FIRE**): Most price variation arises from investors' time-varying expected returns

Context

What explains variation in asset prices?

- **Campbell & Shiller (1988):** Expected cash flows or expected returns

$$\log(P_t/D_t) \approx \text{Constant} + \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [\Delta d_{t+1+h}]}_{\text{Expected Cash Flows}} - \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [r_{t+1+h}]}_{\text{Expected Returns}} \quad (1)$$

- Empirically: Expected returns explain most (or all) variation (e.g. Cochrane (2011))
- Traditional interpretation (**under FIRE**): Most price variation arises from investors' time-varying expected returns

But what if investor beliefs deviate from FIRE?

- Campbell-Shiller decomposition holds under any probability measure

$$\log(P_t/D_t) \approx \text{Constant} + \underbrace{\sum_{h=0}^{\infty} \rho^h \tilde{\mathbb{E}}_t [\Delta d_{t+1+h}]}_{\text{Subjective Expected Cash Flows}} - \underbrace{\sum_{h=0}^{\infty} \rho^h \tilde{\mathbb{E}}_t [r_{t+1+h}]}_{\text{Subjective Expected Returns}} \quad (2)$$

- In principle, can measure subjective expectations with surveys, professional forecasts, etc.

Context

What explains variation in asset prices?

- **Campbell & Shiller (1988):** Expected cash flows or expected returns

$$\log(P_t/D_t) \approx \text{Constant} + \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [\Delta d_{t+1+h}]}_{\text{Expected Cash Flows}} - \underbrace{\sum_{h=0}^{\infty} \rho^h \mathbb{E}_t [r_{t+1+h}]}_{\text{Expected Returns}} \quad (1)$$

- Empirically: Expected returns explain most (or all) variation (e.g. Cochrane (2011))
- Traditional interpretation (**under FIRE**): Most price variation arises from investors' time-varying expected returns

But what if investor beliefs deviate from FIRE?

- Campbell-Shiller decomposition holds under any probability measure

$$\log(P_t/D_t) \approx \text{Constant} + \underbrace{\sum_{h=0}^{\infty} \rho^h \tilde{\mathbb{E}}_t [\Delta d_{t+1+h}]}_{\text{Subjective Expected Cash Flows}} - \underbrace{\sum_{h=0}^{\infty} \rho^h \tilde{\mathbb{E}}_t [r_{t+1+h}]}_{\text{Subjective Expected Returns}} \quad (2)$$

- In principle, can measure subjective expectations with surveys, professional forecasts, etc.
- Empirically: Subjective cash-flow expectations explain more price variation than objective expectations
 - E.g. Delao & Myers (2021, 2023); Bordalo, et al. (2024)

This paper: Combine (1) and (2) to Measure Bias

In long-run: bias in cash flow expectations = bias in return expectations

$$\text{Bias} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h \Delta d_{t+1+h} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h r_{t+1+h}$$

- **Intuition:** Bias is the result of misclassifying expected return variation as expected cash flow variation (or vice versa)

This paper: Combine (1) and (2) to Measure Bias

In long-run: bias in cash flow expectations = bias in return expectations

$$\text{Bias} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h \Delta d_{t+1+h} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h r_{t+1+h}$$

- **Intuition:** Bias is the result of misclassifying expected return variation as expected cash flow variation (or vice versa)
- **After some math:** Bias = PV of predictable innovations in subjective expected cash flows
 - E.g. If P/D forecasts negative future innovations, then cash flow expectations were ex-ante too high

This paper: Combine (1) and (2) to Measure Bias

In long-run: bias in cash flow expectations = bias in return expectations

$$\text{Bias} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h \Delta d_{t+1+h} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h r_{t+1+h}$$

- **Intuition:** Bias is the result of misclassifying expected return variation as expected cash flow variation (or vice versa)
- **After some math:** Bias = PV of predictable innovations in subjective expected cash flows
 - E.g. If P/D forecasts negative future innovations, then cash flow expectations were ex-ante too high

Empirical implementation: VAR to forecast innovations in analyst cash flow expectations

- I/B/E/S analyst EPS expectations (1 and 2 years) & LTG expectations (3-5 years)
- Use VAR to forecast innovations
 - Predictors: Excess S&P 500 returns, log P/D, term spread, small-stock value spread, default spread

This paper: Combine (1) and (2) to Measure Bias

In long-run: bias in cash flow expectations = bias in return expectations

$$\text{Bias} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h \Delta d_{t+1+h} = (\tilde{\mathbb{E}}_t - \mathbb{E}_t) \sum_{h=0}^{\infty} \rho^h r_{t+1+h}$$

- **Intuition:** Bias is the result of misclassifying expected return variation as expected cash flow variation (or vice versa)
- **After some math:** Bias = PV of predictable innovations in subjective expected cash flows
 - E.g. If P/D forecasts negative future innovations, then cash flow expectations were ex-ante too high

Empirical implementation: VAR to forecast innovations in analyst cash flow expectations

- I/B/E/S analyst EPS expectations (1 and 2 years) & LTG expectations (3-5 years)
- Use VAR to forecast innovations
 - Predictors: Excess S&P 500 returns, log P/D, term spread, small-stock value spread, default spread

Main results: Bias helps explain expected returns

- Time series: Bias explains 41% of time series variation in long-run expected returns
- Cross section: Bias is priced; can improve performance of ICAPM
- **Interpretation:** Distorted investor beliefs impact objective expected returns

Overall: Very Interesting Paper

Novel methodology for measuring bias can be very useful

Overall: Very Interesting Paper

Novel methodology for measuring bias can be very useful

1. Interpretation of results

- **Authors' interpretation:** Distorted investor beliefs impact objective expected return
- **Alternative interpretation:** Investor beliefs are not biased, only analyst beliefs
- **Suggestion:** Authors' methodology enables measurement of **investor** bias without investor cash flow expectations
 - Using data on investor expected returns & long-run equivalence of bias in cash flow and return expectations
- **For first time, can make a statement about bias in investor cash flow expectations & impact on asset prices**

Overall: Very Interesting Paper

Novel methodology for measuring bias can be very useful

1. Interpretation of results

- **Authors' interpretation:** Distorted investor beliefs impact objective expected return
- **Alternative interpretation:** Investor beliefs are not biased, only analyst beliefs
- **Suggestion:** Authors' methodology enables measurement of **investor** bias without investor cash flow expectations
 - Using data on investor expected returns & long-run equivalence of bias in cash flow and return expectations
- **For first time, can make a statement about bias in investor cash flow expectations & impact on asset prices**

2. Exploring the cross section

- Look at portfolios ICAPM fails to price: High expected returns but low cash flow betas
- Do those portfolios systematically have high bias betas?
- **ICAPM under subjective beliefs could be unifying model for cross section**

Two Interpretations

Interpretation #1: Biased Investor Beliefs Impact Prices

Two periods

- One risky asset that pays terminal dividend in period 2

$$D = \bar{D} + \epsilon, \epsilon \sim N(0, \sigma^2)$$

- Fixed supply of one share
- Risk-free rate normalized to zero

Interpretation #1: Biased Investor Beliefs Impact Prices

Two periods

- One risky asset that pays terminal dividend in period 2

$$D = \bar{D} + \epsilon, \epsilon \sim N(0, \sigma^2)$$

- Fixed supply of one share
- Risk-free rate normalized to zero

Representative investor with mean-variance preferences

$$\max_Q Q \mathbb{E}^I [D - P] - \frac{\gamma}{2} Q^2 \mathbb{V}^I [D - P]$$

- Expectations taken under investor's beliefs

Interpretation #1: Biased Investor Beliefs Impact Prices

Two periods

- One risky asset that pays terminal dividend in period 2

$$D = \bar{D} + \epsilon, \epsilon \sim N(0, \sigma^2)$$

- Fixed supply of one share
- Risk-free rate normalized to zero

Representative investor with mean-variance preferences

$$\max_Q Q \mathbb{E}^I [D - P] - \frac{\gamma}{2} Q^2 \mathbb{V}^I [D - P]$$

- Expectations taken under investor's beliefs

Representative analyst with same biased cash flow expectations as investor

$$\mathbb{E}^I [D] = \mathbb{E}^A [D] = \bar{D} + \underbrace{b}_{\text{Bias (Predictable Forecast Error)}}$$

- Common assumption in literature: Analyst expectations are good proxy for those of investors

Interpretation #1: Biased Investor Beliefs Impact Prices

Two periods

- One risky asset that pays terminal dividend in period 2

$$D = \bar{D} + \epsilon, \epsilon \sim N(0, \sigma^2)$$

- Fixed supply of one share
- Risk-free rate normalized to zero

Representative investor with mean-variance preferences

$$\max_Q Q \mathbb{E}^I [D - P] - \frac{\gamma}{2} Q^2 \mathbb{V}^I [D - P]$$

- Expectations taken under investor's beliefs

Representative analyst with same biased cash flow expectations as investor

$$\mathbb{E}^I [D] = \mathbb{E}^A [D] = \bar{D} + \underbrace{b}_{\text{Bias (Predictable Forecast Error)}}$$

- Common assumption in literature: Analyst expectations are good proxy for those of investors

Bias in investor/analyst expectations distorts price & objective expected return

$$P = \bar{D} + b - \gamma \sigma^2 \rightarrow \mathbb{E}^{\text{Objective}} [D - P] = \gamma \sigma^2 - b$$

Interpretation #2: Biased Analyst Beliefs Reflect Prices

Now assume investor has FIRE

- No bias in investor cash flow expectations: $\mathbb{E}^I[D] = \bar{D}$

Interpretation #2: Biased Analyst Beliefs Reflect Prices

Now assume investor has FIRE

- No bias in investor cash flow expectations: $\mathbb{E}^I[D] = \bar{D}$
- No distortion in price: $P = \bar{D} - \gamma\sigma^2$

Interpretation #2: Biased Analyst Beliefs Reflect Prices

Now assume investor has FIRE

- No bias in investor cash flow expectations: $\mathbb{E}^I[D] = \bar{D}$
- No distortion in price: $P = \bar{D} - \gamma\sigma^2$
- No distortion in objective expected return: $\mathbb{E}^{Objective}[D - P] = \gamma\sigma^2$

Interpretation #2: Biased Analyst Beliefs Reflect Prices

Now assume investor has FIRE

- No bias in investor cash flow expectations: $\mathbb{E}^I [D] = \bar{D}$
- No distortion in price: $P = \bar{D} - \gamma\sigma^2$
- No distortion in objective expected return: $\mathbb{E}^{Objective} [D - P] = \gamma\sigma^2$

Analyst has biased cash flow expectations because attempts to learn from price

- Analyst believes investor has some private information, attempts to extract from price
 - E.g. Grossman & Stiglitz (1980); Helwig (1980); Kyle (1989); Mendel & Shleifer (2012); Bastianello & Fontanier (2024)

$$\mathbb{E}^A [D] = \bar{D} + \underbrace{\alpha (P - \bar{D})}_{\text{Bias}}$$

Interpretation #2: Biased Analyst Beliefs Reflect Prices

Now assume investor has FIRE

- No bias in investor cash flow expectations: $\mathbb{E}^I[D] = \bar{D}$
- No distortion in price: $P = \bar{D} - \gamma\sigma^2$
- No distortion in objective expected return: $\mathbb{E}^{Objective}[D - P] = \gamma\sigma^2$

Analyst has biased cash flow expectations because attempts to learn from price

- Analyst believes investor has some private information, attempts to extract from price
 - E.g. Grossman & Stiglitz (1980); Helwig (1980); Kyle (1989); Mendel & Shleifer (2012); Bastianello & Fontanier (2024)

$$\begin{aligned}\mathbb{E}^A[D] &= \bar{D} + \underbrace{\alpha(P - \bar{D})}_{\text{Bias}} \\ &= \bar{D} + \underbrace{\alpha\gamma\sigma^2}_{\text{Bias}}\end{aligned}$$

- Bias measured from analyst cash flow expectations has **no impact** on prices or expected returns
 - Analyst cash flow expectations reflect rational discount rate variation in prices

Interpretation #2: Biased Analyst Beliefs Reflect Prices

Now assume investor has FIRE

- No bias in investor cash flow expectations: $\mathbb{E}^I[D] = \bar{D}$
- No distortion in price: $P = \bar{D} - \gamma\sigma^2$
- No distortion in objective expected return: $\mathbb{E}^{Objective}[D - P] = \gamma\sigma^2$

Analyst has biased cash flow expectations because attempts to learn from price

- Analyst believes investor has some private information, attempts to extract from price
 - E.g. Grossman & Stiglitz (1980); Helwig (1980); Kyle (1989); Mendel & Shleifer (2012); Bastianello & Fontanier (2024)

$$\begin{aligned}\mathbb{E}^A[D] &= \bar{D} + \underbrace{\alpha(P - \bar{D})}_{\text{Bias}} \\ &= \bar{D} + \underbrace{\alpha\gamma\sigma^2}_{\text{Bias}}\end{aligned}$$

- Bias measured from analyst cash flow expectations has **no impact** on prices or expected returns
 - Analyst cash flow expectations reflect rational discount rate variation in prices
- **Empirically:** Prices do impact analyst cash flow expectations (Chaudhry, 2025)

Distinguishing the Interpretations

Difficult in general due to lack of data

- Literature uses analyst cash flow expectations because lack data on investor cash flow expectations

Distinguishing the Interpretations

Difficult in general due to lack of data

- Literature uses analyst cash flow expectations because lack data on investor cash flow expectations

However, authors' methodology can potentially distinguish

- Key insight: Bias in long-run cash flow expectations = bias in long-run expected returns

$$\text{Bias} = (\tilde{E}_t - E_t) \sum_{h=0}^{\infty} \rho^h \Delta d_{t+1+h} = (\tilde{E}_t - E_t) \sum_{h=0}^{\infty} \rho^h r_{t+1+h}$$

- We do observe investor expected returns

- Large institutional investors long-term capital market assumptions (Dahquist & Ibert (2024); Couts, Goncalves & Loudis (2024))
 - Shorter expected returns from households (AAII, UBS/Gallup)
 - Professional economists (Livingston)

Distinguishing the Interpretations

Difficult in general due to lack of data

- Literature uses analyst cash flow expectations because lack data on investor cash flow expectations

However, authors' methodology can potentially distinguish

- Key insight: Bias in long-run cash flow expectations = bias in long-run expected returns

$$\text{Bias} = (\tilde{E}_t - E_t) \sum_{h=0}^{\infty} \rho^h \Delta d_{t+1+h} = (\tilde{E}_t - E_t) \sum_{h=0}^{\infty} \rho^h r_{t+1+h}$$

- We do observe investor expected returns

- Large institutional investors long-term capital market assumptions (Dahquist & Ibert (2024); Couts, Goncalves & Loudis (2024))
 - Shorter expected returns from households (AAII, UBS/Gallup)
 - Professional economists (Livingston)

- Can measure bias as predictable component of innovations in investor expected returns & apply same VAR machinery
 - Rather than predictable component of innovations in analyst cash flow expectations

Distinguishing the Interpretations

Difficult in general due to lack of data

- Literature uses analyst cash flow expectations because lack data on investor cash flow expectations

However, authors' methodology can potentially distinguish

- Key insight: Bias in long-run cash flow expectations = bias in long-run expected returns

$$\text{Bias} = (\tilde{E}_t - E_t) \sum_{h=0}^{\infty} \rho^h \Delta d_{t+1+h} = (\tilde{E}_t - E_t) \sum_{h=0}^{\infty} \rho^h r_{t+1+h}$$

- We do observe investor expected returns

- Large institutional investors long-term capital market assumptions (Dahquist & Ibert (2024); Couts, Goncalves & Loudis (2024))
 - Shorter expected returns from households (AAII, UBS/Gallup)
 - Professional economists (Livingston)

- Can measure bias as predictable component of innovations in investor expected returns & apply same VAR machinery

- Rather than predictable component of innovations in analyst cash flow expectations

- **Does investor bias align with analyst bias? Or is there meaningful (potentially time-varying) heterogeneity?**

- Important contribution to literature either way

Exploring the Cross Section

Can Bias Help Explain Anomaly Returns?

Assume interpretation #1

Can Bias Help Explain Anomaly Returns?

Assume interpretation #1

Paper derives 3-factor ICAPM

$$\mathbb{E}^{\mathbb{P}} R_{i,t}^e \approx \lambda_d \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{d,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. Cash Flow News}} + \lambda_r \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{r,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. ER News}} + \lambda_B \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{B,t}]}_{\text{Risk due to Covariation with Bias}}$$

- First two factors: Bad and good beta from Campbell & Vuolteenaho (2004)
 - Cash flow risk has higher risk premium: $\lambda_d > \lambda_r$

Can Bias Help Explain Anomaly Returns?

Assume interpretation #1

Paper derives 3-factor ICAPM

$$\mathbb{E}^{\mathbb{P}} R_{i,t}^e \approx \lambda_d \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{d,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. Cash Flow News}} + \lambda_r \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{r,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. ER News}} + \lambda_B \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{B,t}]}_{\text{Risk due to Covariation with Bias}}$$

- First two factors: Bad and good beta from Campbell & Vuolteenaho (2004)
 - Cash flow risk has higher risk premium: $\lambda_d > \lambda_r$
 - Third factor: Objective expected return risk that investors misperceive as cash flow risk

Can Bias Help Explain Anomaly Returns?

Assume interpretation #1

Paper derives 3-factor ICAPM

$$\mathbb{E}^{\mathbb{P}} R_{i,t}^e \approx \lambda_d \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{d,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. Cash Flow News}} + \lambda_r \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{r,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. ER News}} + \lambda_B \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{B,t}]}_{\text{Risk due to Covariation with Bias}}$$

- First two factors: Bad and good beta from Campbell & Vuolteenaho (2004)
 - Cash flow risk has higher risk premium: $\lambda_d > \lambda_r$
 - Third factor: Objective expected return risk that investors misperceive as cash flow risk
- **Upshot:** Bias can lead objective expected return to be priced like cash flow risk

Can Bias Help Explain Anomaly Returns?

Assume interpretation #1

Paper derives 3-factor ICAPM

$$\mathbb{E}^{\mathbb{P}} R_{i,t}^e \approx \lambda_d \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{d,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. Cash Flow News}} + \lambda_r \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{r,t}^{\mathbb{P}}]}_{\text{Risk due to Covariation with Obj. ER News}} + \lambda_B \underbrace{\text{Cov}^{\mathbb{P}} [r_{i,t}, \varepsilon_{B,t}]}_{\text{Risk due to Covariation with Bias}}$$

- First two factors: Bad and good beta from Campbell & Vuolteenaho (2004)
 - Cash flow risk has higher risk premium: $\lambda_d > \lambda_r$
 - Third factor: Objective expected return risk that investors misperceive as cash flow risk
- **Upshot:** Bias can lead objective expected return to be priced like cash flow risk

Empirically: Bias factor helps explain cross section of expected returns

- 3-factor $R^2 = 35\% > 3\% = 2\text{-factor } R^2$

Can Bias Help Explain Anomaly Returns?

Suggestion: Explore implications for particular anomalies

Can Bias Help Explain Anomaly Returns?

Suggestion: Explore implications for particular anomalies

Do portfolios with high expected returns but low cash flow betas have high bias betas?

- Momentum: Recent winners have lower cash flow betas than recent losers (Campbell, et al (2018))
 - ICAPM counterfactually predicts recent winners should have lower expected returns

Can Bias Help Explain Anomaly Returns?

Suggestion: Explore implications for particular anomalies

Do portfolios with high expected returns but low cash flow betas have high bias betas?

- Momentum: Recent winners have lower cash flow betas than recent losers (Campbell, et al (2018))
 - ICAPM counterfactually predicts recent winners should have lower expected returns
- But recent winners may have **higher bias betas**
 - E.g. If both aggregate bias and past returns to recent winners driven by overreaction
 - Could explain high expected returns
 - Investors demand high compensation because misperceive objective expected return risk as cash flow risk

Can Bias Help Explain Anomaly Returns?

Suggestion: Explore implications for particular anomalies

Do portfolios with high expected returns but low cash flow betas have high bias betas?

- Momentum: Recent winners have lower cash flow betas than recent losers (Campbell, et al (2018))
 - ICAPM counterfactually predicts recent winners should have lower expected returns
- But recent winners may have **higher bias betas**
 - E.g. If both aggregate bias and past returns to recent winners driven by overreaction
 - Could explain high expected returns
 - Investors demand high compensation because misperceive objective expected return risk as cash flow risk

Upshot: An ICAPM under subjective beliefs could be unifying model for cross section

- At least qualitatively

Minor Comments

How do results vary with set of VAR variables?

- Adding more variables may uncover more predictability in innovations to subjective cash flow expectations...
- ...and so may reveal a greater role for bias in explaining price variation

Shock to long-run subjective cash flow expectation series contains predictable component

- On page 18
- Total log annual change in EPS contains predictable and unpredictable components
- Presence of predictable components would (wrongly) show up as bias
 - $\varepsilon_{d,t}^S$ will have be predictable even if innovations to analyst forecasts are not
- Perhaps try residualizing with respect to common predictors

Could be useful to validate long-run expected return series against analyst price targets

- VAR uses analyst cash flow expectations
- SVIX, Livingston survey, etc. reflect subjective expected returns of non-analysts
 - These agents may have different cash flow expectations than analysts
 - So VAR-based subjective expected returns may not align
- VAR-based subjective expected returns should align with analyst subjective expected returns (price targets)
- Could even use price targets as additional VAR variable to explore dynamics of subjective expected returns
 - I.e. Explore properties of short-term vs. long-term components of $\mathcal{F}_{r,t}^S$

Conclusion

Very interesting paper

New methodology can shed new light on subjective beliefs & asset prices

Main comments

- Use methodology on alternative data to rule out alternative interpretations
- Dig deeper into cross section